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Some definitions...

16

First Architecture → Deep learning term → First training strategy
1965                               1986                                  2006 

https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55

Artificial intelligence: study of intelligent agents; any 
device that perceives its environment and takes 
actions that maximize its chance of successfully 
achieving its goals.

Machine learning: Field of study that explores the 
construction of algorithms that can learn from data.

Deep learning: subset of machine learning algorithms 
composed by neural network which learn from vast 
amount of data.

https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55


1. Image-based diagnosis for radiology, dermatology, 
ophthalmology, and pathology

2. Genome interpretation
3. Biomarker Discovery
4. Inferring health status through wearable devices
5. Autonomous robotic surgery
6. Clinical outcome prediction
7. Patient monitoring 

Impacted fields from the use of AI technologies in medical applications 

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018; 2:719–31. 
https://doi.org/10.1038/s41551-018-0305-z PMID: 31015651 



• Natural language Processing
• Avatars an Deep imaging
• Sensors, biometrics
• ML for complex analy7cs
• Genera7ve AI
• Robo7cs for surgery, laser, 
• Drug delivery by nanotech
• AI for monitoring of pa7ents
• AI for support for pa7ents







Eric Topol. Deep Medicine. How AI can make medicine human again SBN-13: 978-1541644632 

• Demographics
• Clinical data
• Imaging
• Biosensors
• Genomic
• Transcriptomics
• Proteomics
• Metabolomics
• Microbiomics
• Epigenomics
• Exposomics

DEEP PHENOTYPE AND PRECISION MEDICINE

• Radiomics
• Dermatomics: “Deep” imaging 

phenotype



3D TBP WITH POLARIZED LIGHT AND HIGH RESOLUTION
Avatars of Patients
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Non‑invasive scoring of cellular 
atypia in keratinocyte cancers 
in 3D LC‑OCT images using Deep 
Learning
Sébastien Fischman1*, Javiera Pérez‑Anker2,3, Linda Tognetti4, Angelo Di Naro4, 
Mariano Suppa5,6,7, Elisa Cinotti4,6, Théo Viel1, Jilliana Monnier6,8, Pietro Rubegni4, 
Véronique del Marmol5, Josep Malvehy2,3, Susana Puig2,3, Arnaud Dubois9 & 
Jean‑Luc Perrot10

Diagnosis based on histopathology for skin cancer detection is today’s gold standard and relies on 
the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires 
a strong expertise and is time‑consuming. Moreover the notion of atypia or dysplasia of the visible 
cells used for diagnosis is very subjective, with poor inter‑rater agreement reported in the literature. 
Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of 
the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate 
that the notion of cellular atypia can be objectively defined and quantified with a non‑invasive in‑vivo 
approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte 
(KC) nuclei from Line‑field Confocal Optical Coherence Tomography (LC‑OCT) 3D images. Based on 
these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived 
to describe KC nuclei individually. We show that, using those metrics, simple and more complex 
definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving 
Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on 
the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise 
quantitative monitoring of skin lesions and treatments, offering a promising non‑invasive tool for 
clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a 
lesion and follow the evolution of pre‑cancerous lesions over time.

Histopathology is the gold standard to con!rm a diagnosis in all tissues. "e advent of numerical technologies 
facilitate the access of physicists to digital imaging. However, diagnoses and prognoses with whole slide images 
still su#er from the subjectivity and level of experience of the specialist, even when some grading scales systems 
 exist1,2.

"e recent progress in computer vision with Deep Learning techniques has opened up new opportunities 
to create more reliable quantitative metrics based on physical segmentations to help pathologists. Speci!cally, 
metrics based on cell nuclei spatial distributions have gained recent interest as cell nuclei are essential markers 
for the diagnosis and study of  cancer3. Due to the large amount of cells visible in medical images at microscopic 
level, their global geometry is especially hard to understand for the human eye, making automated segmentation 
of nuclei particularly helpful and promising. Waliszewski et al.4 tried to quantify the spatial distribution of cancer 
cell nuclei with a fractal geometrical model to automate Gleason scoring. Kendall et al.5 introduced geoscience 
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frameworks and a two dimensional space (2D) graph-based approach for digital pathology in order to quanti-
tatively di!erentiate lesional and non-lesional images. Lu et al.6 also used automated cell nuclei segmentations 
and a local nuclear graph approach to create complex, hardly interpretable but reproducible metrics, useful for 
predicting lung cancer survival of patients. Jiao et al.7 proposed a 2D distribution analysis of spatial organisation 
of cell nuclei in brain tumors using Voronoi statistics. Zhou et al.8 applied a graph neural network approach from 
nuclei segmentation in order to automatically grade colorectal cancer histology images.

All these studies tried to capture the complexity of the spatial distribution of cell nuclei from histology slides 
into a few quantitative metrics to demonstrate predictive or discriminative power. But histology slides cannot 
perfectly re#ect the actual physical changes of tissues. In fact, slide preparation pipeline (including biopsy, tissue 
$xation, processing, sectioning and staining) creates physical deformation and results in a 2D representation 
that cannot fully capture the spatial complexity of a 3D reality, which is a known  issue9–11.

LC-OCT is a new in-vivo non-invasive medical imaging technology that combines deep penetration and 
cellular resolution in  3D12. It allows to study cell nuclei distributions without the sliding procedure deformation 
and renders information in 3D. With a resolution of 1 µm, LC-OCT is more accurate than standard Optical 
Coherence Tomography (OCT)13 and presents an ideal resolution for nuclei segmentation. Re#ectance Con-
focal Microscopy (RCM) images are very similar to LC-OCT images, except that they don’t allow imaging in 
3D. Pellacani et al.14 showed that two by two comparisons of 2D RCM images could allow specialists to rank 
actinic keratosis by atypia in a similar order than with histopathology images. Such an approach does not allow 
to objectively de$ne atypia nor systematically reproduce the results, and no absolute atypia score is generated, 
only a relative score among a $xed set of images.

%is study proposes a novel automated approach based on deep learning segmentation applied to 3D LC-OCT 
images, capable of accurately assessing the amount of atypia in keratinocyte cancers. Our approach overcomes 
many of the limitations of existing studies. Our pipeline is non-invasive and therefore does not require biop-
sies. Atypia scores are calculated on 3D LC-OCT images and therefore do not su!er from the distortions and 
limitations of a 2D histology slide which is also a time consuming process whereas a 3D LC- OCT image can 
be acquired in 30 seconds. All features used to de$ne cellular atypia are physically robust and easy to interpret, 
making the $nal score more reliable than that provided by ”black box” algorithms.

Material
Line‑field confocal optical coherence tomography (LC‑OCT). Images of the study were collected 
using LC–OCT devices (DAMAE Medical, Paris) which produce—painlessly and non-invasively— vertically-
oriented (histology-like) and horizontally-oriented (similar to Re#ectance Confocal Microscopy (RCM)) sec-
tional images as well as full 3D volume block images (Fig. 1). %e LC-OCT technology uses a two-beam interfer-

Figure 1.  (a) Representation of a 3D Voronoi Diagram in a cube. (b) Scheme of a StarDist inputs, probability 
predictions and rays predictions. (c) Representation of skin structure, center to center distance (in green) and 
border to border distance (in blue). (d) Example of 3D visualisation of StarDist nuclei detection in LC-OCT 3D 
images.
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analyse the feature importance for each model as shown in Fig. 5 to give more trust to the practitioners in the 
automated scores.

For the Logistic Regression, the perfect prototype for an atypical cell is a large (both large nucleus volume 
and cytoplasm radius), non spherical (low compactness) cell, surrounded by a few large cells as neighbours. For 
the XGBoost algorithm, the perfect prototype for an atypical cell is also large cell surrounded by a few hetero-
geneous cells in terms of sizes as shown in Fig. 5c,d. For the Isolation Forest 4 features are mostly used to de"ne 
atypia (Fig. 5b): the volume ratio with neighbouring cells, the distance and number of neighbouring cells and 
the cytoplasm size.

Even though the de"nitions of atypia are di#erent for each model they are highly correlated between each 
other: the Logistic Regression has a Pearson correlation coe$cient at the global atypia level of 0.98 and 0.95 
with XGBoost and the simple rule respectively while the Isolation Forest has a correlation of 0.93, 0.88 and 0.91 
with the simple rule, the Logistic Regression and XGBoost respectively. %ese correlations suggest that the most 

Figure 3.  Example of atypia detections (in red) and normal nulcei (in green) with the simple rule-based atypia 
de"nition for one AK lesion (a) and its perilesional "eld of cancerization (b).

Figure 4.  Box plots (min, max, median, q1, q3) of average atypia score per stack for di#erent methods 
including medical consensus from the reader study. %e medical consensus has a much lower AUC score than 
the other automated methods.
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• An unsupervised approach with the Isolation Forest  algorithm27, where atypia are simply considered as cells 
that look di!erent from the majority of cells. No labels are needed for training the algorithm.

• A weakly-supervised approach, where the main assumption is that atypia mostly appear in pathological skin. 
During the training phase, all nuclei from pathological skin are considered atypical while all nuclei from 
healthy skin are considered healthy. Two di!erent models are trained following this paradigm: a Logistic 
 Regression28 and a  XGBoost29.

Detailed explanations about the di!erent algorithms, training procedures and outputs analysis can be found in 
the “Methods” section.

Reader study. To compare the automated models to medical experts, we asked three dermatologists, highly 
experienced in non-invasive imaging, to review and assess an atypia score for each 3D image. "e images are 
presented to the experts as two short videos, en-face and en-coupe views, spanning the entire 3D image.

Experts were asked to assess 3 criteria both on horizontal and vertical images (atypia related to the shape, size 
and spatial spread of atypia nuclei) using a scale from 0 to 4 (0 meaning no irregularities, 1 if less than 25%, 2 if 
between 25 and 50%, 3 between 50 and 75% and 4 if more than 75% of nuclei are irregular).

In total, 6 scores were given for each of the 185 LC-OCT 3D images of the study. For each score, a higher 
value indicates a higher degree of atypia. When summing all the scores, this gives a global atypia score ranging 
from 0 to 24. "e score is normalized between 0 and 1 and compared to the Machine Learning based scores. A 
medical consensus score is computed by averaging the scores of each reviewer.

Statistical tools. Classical statistical tools were used to analyse the di!erent results of the study. To compare 
metrics between the healthy and pathological skins we used a T-test for the means of two independent samples of 
scores using  scipy30. To compute the correlation between the scores of the di!erent methods we used the Pearson 
correlation also using scipy.

Results

Statistically significant differences at image level. A T-test analysis of the image level metrics shows 
statistically signi#cant di!erences between healthy and pathological populations (Fig. 2). Positive t-values indi-
cate larger values for the pathological population than the healthy population while negative value indicate the 
opposite.

Healthy skins have a higher cell density than pathological ones (Fig. 2a : t-value = 9.69, p-value = 3.39 × 10−18 ) 
and larger nuclei compared to their cytoplasm as shown by a lower border to border distance over center to 
center distance ratio. (Fig. 2h: t-value = 11.9, p-value = 1.79 × 10−24).

However pathological skins have larger nuclei in terms of volumes (Fig. 2c : t-value = 1.24, p-value = 3.88 
× 10−26 ). Moreover smaller and larger nuclei coexist in pathological skins while volumes are more uniform in 

Figure 2.  Global metrics per image with their corresponding t-values and p-values for the T-test for the means 
of two independent samples of scores.
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Gene7c markers, diet, and microbiota, both on 
the skin and in the gut
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“Only 27 percent of a doctor’s time is spent with 
patients — and nearly half is spent on EHR and desk 
work?

Sinsky C, et al. Allocation of Physician Time in 
Ambulatory Practice: A Time and Motion Study in 4 
Specialties. Ann Intern Med. 2016 Dec 
6;165(11):753-760. 

For every hour physicians provide direct clinical face time to patients, nearly 2 
additional hours is spent on EHR and desk work within the clinic day. Outside 
office hours, physicians spend another 1 to 2 hours of personal time each night 
doing additional computer and other clerical work.









Natural language processing



ARTIFICIAL INTELLIGENCE AND DERMATOLOGY

Five current areas of applications for ML in 
DERMATOLOGY

1. Disease classification using clinical/ 
dermoscopy images

2. Disease classification using dermatopathology 
images

3. Assessment of diseases using mobile 
applications and personal monitoring devices

4. Facilitating large-scale epidemiology research 
5. Precision medicine

among which 70 articles were deemed relevant
to this review.

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

OVERVIEW OF ARTIFICIAL
INTELLIGENCE AND MACHINE
LEARNING

What is the Difference Between Artificial
Intelligence and Machine Learning?

Artificial intelligence is a branch of computer
science that uses machines and programs to
simulate intelligent human behavior. Artificial
intelligence dates back to the 1950s to Alan
Turing’s question ‘‘Can machines think?’’ [6]. By
the 1970s, software engineers had created
algorithms with explicit rules for computers on

how to process data. However, the heuristics of
human decision making in medicine were not
easy to program into explicit rules.

ML is a tool comprising a subset of artificial
intelligence that enables the goals of artificial
intelligence to be achieved (Fig. 1). Recently,
ML has piqued attention for its broad range of
uses in daily life from personalized online rec-
ommendations for videos and news to self-
driving cars.

ML covers a variety of algorithms and sta-
tistical methods, including logistic regression,
random forest, and deep learning. Although ML
can seem enigmatic at first, it can be deeply
related to traditional statistical models recog-
nizable to most dermatologists.

Machine Learning Approaches

Machine learning approaches can be divided
into three broad categories: supervised learning,
unsupervised learning, and reinforcement
learning [7]. Supervised learning requires a
dataset to be presented as inputs (called fea-
tures) and outputs (called labels) [7]. For exam-
ple, in an algorithm that classifies a pigmented
lesion as a melanoma or benign, images of
pigmented lesions are ‘‘features’’ and the cate-
gorical data of whether it is malignant or benign
are ‘‘labels.’’ The algorithm is first trained with
labeled images of melanoma and benign pig-
mented lesions and then the computer gener-
alizes this information to a new, unseen set of
images of skin. Supervised learning is the most
common type of learning used in dermatology.
In contrast, unsupervised learning only requires
inputs (unlabeled data), and this approach can
identify unknown clusters or anomalies in data
[7]. Reinforcement learning is a hybrid of both
supervised and unsupervised learning which
learns by trial and error and input from the
environment [7]. An example of reinforcement
learning is the algorithm in AlphaGo [8]. Rein-
forcement learning has yet to be explored in
dermatology.

Fig. 1 Artificial intelligence and machine learning.
Machine learning is a type of artificial intelligence. Some
common types of machine learning approaches used in
dermatology include convolutional neural network
(CNN), natural language processing (NLP), support vector
machine, and random forest. Notably, there are many
other possible machine learning approaches that are not
listed and out of the scope of this review

Dermatol Ther (Heidelb) (2020) 10:365–386 367

Chan S, Reddy V, Myers B, et al. Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations. 
Dermatol Ther (Heidelb). 2020 Jun;10(3):365-386.
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Man againts Machine
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Man against machine: diagnostic performance of a
deep learning convolutional neural network for
dermoscopic melanoma recognition in comparison
to 58 dermatologists

H. A. Haenssle1*,†, C. Fink1†, R. Schneiderbauer1, F. Toberer1, T. Buhl2, A. Blum3, A. Kalloo4,
A. Ben Hadj Hassen5, L. Thomas6, A. Enk1 & L. Uhlmann7

1Department of Dermatology, University of Heidelberg, Heidelberg; 2Department of Dermatology, University of Göttingen, Göttingen; 3Office Based Clinic of
Dermatology, Konstanz, Germany; 4Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; 5Faculty of Computer
Science and Mathematics, University of Passau, Passau, Germany; 6Department of Dermatology, Lyons Cancer Research Center, Lyon 1 University, Lyon, France;
7Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
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Tel: þ49-6221-56-39555; Fax: þ49-6221-56-4996; E-mail: Holger.Haenssle@med.uni-heidelberg.de
†Both authors contributed equally as co-first authors.

Background: Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a
CNN’s diagnostic performance to larger groups of dermatologists are lacking.

Methods: Google’s Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding
diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II:
dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the
curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus
an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the
dermatologists’ diagnostic performance in their management decisions and differences in the diagnostic performance of
dermatologists during level-I and -II of the reader study. Additionally, the CNN’s performance was compared with the top-five
algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.

Results: In level-I dermatologists achieved a mean (6standard deviation) sensitivity and specificity for lesion classification of
86.6% (69.3%) and 71.3% (611.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (69.6%,
P¼ 0.19) and specificity to 75.7% (611.7%, P< 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared
with dermatologists in level-I (71.3%, P< 0.01) and level-II (75.7%, P< 0.01) at their sensitivities of 86.6% and 88.9%, respectively.
The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P< 0.01). The CNN scored results
close to the top three algorithms of the ISBI 2016 challenge.

Conclusions: For the first time we compared a CNN’s diagnostic performance with a large international group of 58
dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians’
experience, they may benefit from assistance by a CNN’s image classification.

Clinical trial number: This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://
www.drks.de/drks_web/).

Key words: melanoma, melanocytic nevi, dermoscopy, deep learning convolutional neural network, computer algorithm,
automated melanoma detection

VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
All rights reserved. For permissions, please email: journals.permissions@oup.com.
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Articles

Comparison of the accuracy of human readers versus 
machine-learning algorithms for pigmented skin lesion 
classification: an open, web-based, international, diagnostic 
study
Philipp Tschandl, Noel Codella, Bengü Nisa Akay, Giuseppe Argenziano, Ralph P Braun, Horacio Cabo, David Gutman, Allan Halpern, Brian Helba, 
Rainer Hofmann-Wellenhof, Aimilios Lallas, Jan Lapins, Caterina Longo, Josep Malvehy, Michael A Marchetti, Ashfaq Marghoob, Scott Menzies, 
Amanda Oakley, John Paoli, Susana Puig, Christoph Rinner, Cliff Rosendahl, Alon Scope, Christoph Sinz, H Peter Soyer, Luc Thomas, Iris Zalaudek, 
Harald Kittler

Summary
Background Whether machine-learning algorithms can diagnose all pigmented skin lesions as accurately as human 
experts is unclear. The aim of this study was to compare the diagnostic accuracy of state-of-the-art machine-learning 
algorithms with human readers for all clinically relevant types of benign and malignant pigmented skin lesions.

Methods For this open, web-based, international, diagnostic study, human readers were asked to diagnose 
dermatoscopic images selected randomly in 30-image batches from a test set of 1511 images. The diagnoses from 
human readers were compared with those of 139 algorithms created by 77 machine-learning labs, who participated in 
the International Skin Imaging Collaboration 2018 challenge and received a training set of 10 015 images in advance. 
The ground truth of each lesion fell into one of seven predefined disease categories: intraepithelial carcinoma 
including actinic keratoses and Bowen’s disease; basal cell carcinoma; benign keratinocytic lesions including solar 
lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and 
vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch 
between all human readers and the top three algorithms, and between human experts and the top three algorithms.

Findings Between Aug 4, 2018, and Sept 30, 2018, 511 human readers from 63 countries had at least one attempt in the 
reader study. 283 (55·4%) of 511 human readers were board-certified dermatologists, 118 (23·1%) were dermatology 
residents, and 83 (16·2%) were general practitioners. When comparing all human readers with all machine-learning 
algorithms, the algorithms achieved a mean of 2·01 (95% CI 1·97 to 2·04; p<0·0001) more correct diagnoses 
(17·91 [SD 3·42] vs 19·92 [4·27]). 27 human experts with more than 10 years of experience achieved a mean of 
18·78 (SD 3·15) correct answers, compared with 25·43 (1·95) correct answers for the top three machine algorithms 
(mean difference 6·65, 95% CI 6·06–7·25; p<0·0001). The difference between human experts and the top 
three algorithms was significantly lower for images in the test set that were collected from sources not included in the 
training set (human underperformance of 11·4%, 95% CI 9·9–12·9 vs 3·6%, 0·8–6·3; p<0·0001).

Interpretation State-of-the-art machine-learning classifiers outperformed human experts in the diagnosis of pigmented 
skin lesions and should have a more important role in clinical practice. However, a possible limitation of these 
algorithms is their decreased performance for out-of-distribution images, which should be addressed in future research.

Funding None.

Copyright © 2019 Elsevier Ltd. All rights reserved.

Introduction
Diagnosis of skin cancer needs specific expertise that 
might not be available in many clinical settings. Accurate 
diagnosis of early melanoma in particular demands 
experience in dermatoscopy, a non-invasive examination 
technique1 that improves diagnosis compared with 
examination with the naked eye.2 Dermatoscopy, which 
requires proper training and experience, is used widely 
by dermatologists,3 but also by general practitioners4 and 
other health-care professionals in areas where specialist 
dermatological services are not readily available.

The paucity of experts and the rising incidence of skin 
cancer in an aging population5 have increased the 
demand for point-of-care decision support systems that 
can diagnose skin lesions without the need of human 
expertise. There has been a long tradition of translational 
research involving machine learning for melanoma 
diagnosis based on dermatoscopic images.6–8 Although 
some automated diagnostic devices have been approved 
by the US Food and Drug Administration,9,10 such devices 
are not widely adopted in clinical practice for various 
reasons—for example, the devices are approved for 
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The area under the curve for the prediction of malignancy 
via vote frequency was 0·958 (95% CI 0·948–0·967) for 
human readers, and 0·963 (0·953–0·973; p=0·46; 
MetaOptima Technology Inc), 0·971 (0·961–0·982; 
p=0·05; DAISYLab), and 0·958 (0·945–0·972; p=0·91; 
Medical Image Analysis Group, Sun Yat-Sen University) 
for the top three algorithms (no significant difference for 
all three comparisons).

Discussion
We provide a state-of-the-art comparison of machine-
learning algorithms with human readers for the 
diagnosis of all clinically relevant types of pigmented 
skin lesions using dermatoscopic images. Machine-
learning algorithms outperformed human readers with 
respect to most outcome measures. In sets of 30 randomly 
selected lesions, the best machine-learning algorithms 
achieved a mean of 7·94 more correct diagnoses than the 
average human reader, and a mean of 6·65 more correct 
diagnoses than expert readers.

A common problem in human reader studies is 
the definition of experts. In a screening test, we com-
pared the self-reported domain-specific experience of 
participants with their actual performance and found 
that self-reported years of experience reliably predicted 
domain-specific expertise (appendix p 2). Unlike in 
similar studies,15,22,23 our test set included not only 
melanoma and nevi, but also non-melanocytic lesions. 
The primary task in our study was a multiclass problem 
with seven disease categories, and not just the simple 
binary problem of melanoma versus nevi. Therefore, 
our diagnostic study could be considered closer to a real-
life situation than other studies in this field. Our test set 
is unique because of the large number of benign lesions 
that were not biopsied or excised. Inclusion of typical 
benign lesions avoids verification bias, which is a 
common limitation of diagnostic studies. Most benign 
lesions were nevi that we monitored for more than 
18 months without any changes, which is as reliable a 
ground truth as pathological verification. The lesions 
were collected in two different settings—a tertiary 
referral centre in Europe and a skin cancer clinic in 
Australia. European patients are typified by a high 
number of nevi and a personal history of melanoma, 
and Australian patients by severe chronic sun damage. 
Human readers, including experts, achieved the lowest 
accuracy in the Australian dataset, which is not 
surprising since this dataset was more challenging and 
contained many equivocal lesions on chronic sun 
damaged skin that were biopsied to rule out malignancy. 
This set also contained difficult to diagnose melanomas 
and many pigmented intraepithelial carcinomas, which 
were often misdiagnosed by human readers. However, 
the top three algorithms performed equally well across 
all datasets, including the Australian set, and across 
all diagnoses, including pigmented intraepithelial 
carcinomas.

Overfitting to the distribution of images in the train-
ing set might explain the superior performance of 
algorithms. However, overfitting would lead to lack of 
generalisability. We anticipated overfitting and tried to 
quantify it by including a set of images from sources that 
did not provide images for the training set. As we 
expected, the accuracy of the top three machine-learning 
algorithms was lower in the set of new lesions, but still 
higher than the accuracy of human experts, which was 
also shown previously by Han and colleagues.14 This 
result indicates a potential limitation of algorithms for 
out-of-distribution images, which should be addressed in 
future research.

The low sensitivity of human experts for melanoma is 
striking and might be explained by the difficult test set, 
especially with regard to the Australian set, and by 
the framing of the task and presentation of images. 
A limitation of our study is that we did not provide 
additional data, for example, anatomical site, age, and 
sex, beyond dermatoscopic images, although these data 
were also lacking in the development of the algorithm. In 
a real-world situation, human readers would consider 
the variability of lesions within a given patient. This 
approach, which is a variant of the so-called ugly duckling 
rule,24 increases sensitivity and specificity, but requires 

Figure 4: Receiver operating characteristic curves of the diagnostic performance for discrimination of 
malignant from benign pigmented skin lesions
Blue dots indicate single human sensitivities and specificities, the purple box indicates the mean, and the error bars 
around the mean indicate 95% CI.
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2017: AI “better than dermatologist” at 
detecting skin cancer



Current Deficiencies of AI for Skin Cancer Diagnosis: Validation of prediction models for skin cancer 
detection on dermoscopy images in the 2019 International Skin Imaging Collaboration (ISIC) Grand 
Challenge. Digital Lancet Oncology 2022 
Marc Combalia MS, Noel Codella PhD, Veronica Rotemberg MD, Cristina Carrera MD, Stephen Dusza PhD, David Gutman MD, Brian 
Helba, Harald Kittler MD, Nicholas R. Kurtansky BS, Konstantinos Liopyris MD, Michael A. Marchetti MD, Sebastian Podlipnik MD, Susana 
Puig MD, Christoph Rinner PhD, Philipp Tschandl MD, Jochen Weber, Allan Halpern MD, and Josep Malvehy MD

Methods: A large dermoscopic image classification challenge
was designed to quantify impacts to diagnostic accuracy from
shifts in statistical distributions of data, disease categories not
represented in training datasets, and imaging or lesion artifacts.

Factors that may be beneficial to performance, such as clinical
metadata and external training data, were also evaluated.
25,331 training images across 8 diseases were provided to
challenge participants.

Conclusions: We have identified specific deficiencies and safety
issues in AI dermatologic diagnostic systems which should be
addressed in future diagnostic evaluation protocols to improve
safety and reliability in clinical practice.



Current Deficiencies of AI for Skin Cancer Diagnosis: Validation of prediction models for skin cancer 
detection on dermoscopy images in the 2019 International Skin Imaging Collaboration (ISIC) Grand 
Challenge. Digital Lancet Oncology 2022 (in press)
Marc Combalia MS, Noel Codella PhD, Veronica Rotemberg MD, Cristina Carrera MD, Stephen Dusza PhD, David Gutman MD, Brian 
Helba, Harald Kittler MD, Nicholas R. Kurtansky BS, Konstantinos Liopyris MD, Michael A. Marchetti MD, Sebastian Podlipnik MD, Susana 
Puig MD, Christoph Rinner PhD, Philipp Tschandl MD, Jochen Weber, Allan Halpern MD, and Josep Malvehy MD



Task Force of ArIfical Intelligence of the European Academy of 
Dermatology and Venereology (EADV)

“The mission of the AI Task Force is to influence, promote and develop
this field within Dermatology and Venereology, to provide i) a
mechanism for greater engagement of EADV members in AI and ii)
links to existing subspecialty and other scientific and professional
societies including the area of Health, Digital Health and other
specialties”.

Creation of communication tools for the management 
of the Task Force, projects and dissemination 

Radar of AI groups/projects in Dermatology in Europe 
(and worldwide)

Educa7on in AI for dermatologists, students, residents, 
pa7ents, general public, computer scien7sts

Collaborative research and innovation in AI in 
Dermatology and Venereology 

POSITION PAPERS on AI and Dermatology
Analyses of the regulatory policies of software using AI (European Directives set forth by the European Commission)









Checklist for Evaluation of Image-Based Artificial Intelligence Reports
in Dermatology
CLEAR Derm Consensus Guidelines From the International Skin Imaging
Collaboration Artificial IntelligenceWorking Group
Roxana Daneshjou, MD, PhD; Catarina Barata, PhD; Brigid Betz-Stablein, PhD; M. Emre Celebi, PhD; Noel Codella, PhD;
Marc Combalia, MSc; Pascale Guitera, MD, PhD; David Gutman, MD, PhD; Allan Halpern, MD; Brian Helba, BS; Harald Kittler, MD;
Kivanc Kose, PhD; Konstantinos Liopyris, MD, PhD; JosepMalvehy, MD; Han Seung Seog, MD, PhD; H. Peter Soyer, MD;
Eric R. Tkaczyk, MD, PhD; Philipp Tschandl, MD, PhD; Veronica Rotemberg, MD, PhD

A rtificial intelligence (AI)has thepotential to transformclini-
cal care andworkflows in dermatology; however, achiev-
ing fair, reliable, and safe algorithms is necessary for clini-

cal implementation.1,2 While the pace of AI development is
accelerating in all areas ofmedicine, dermatology is particularly ac-
cessible for image-based AI owing to the widespread use of pho-
tographyasanassessment tool, includingonconsumerdevicessuch
assmartphonesandtablets.Guidelineshavebeenproposed forpro-
spective clinical trials of AI in medicine and dermatology through
Standard Protocol Items: Recommendations for Interventional
Trials (SPIRIT)-AI and Consolidated Standards of Reporting Trials
(CONSORT)-AI.3 However, many key decisions aremade during al-
gorithmic development and initial evaluation. There is a clear need
for comprehensive assessment guidelines of AI algorithms as they
are being developed and reviewed prior to clinical trials.3-6

Most AI publications in dermatology describe the develop-
ment and initial testing of new AI algorithms. While other special-
ties such as radiology and cardiology have proposed guidelines for
reviewing articles that useAI, dermatologists and researchers have

thus far not proposed an evaluative framework.7-9 We propose a
framework that builds on the Standards for Reporting of Diagnos-
tic Accuracy (STARD-15) guidelines for diagnostic accuracy studies.
The STARD-AI, Developmental and Exploratory Clinical Investiga-
tion of Decision-Support Systems Driven by Artificial Intelligence
(DECIDE-AI), PredictionModel Risk of Bias Assessment Tool (PRO-
BAST)-AI, and Transparent Reporting of a Multivariable Prediction
Model of Individual Prognosis or Diagnosis (TRIPOD)-AI guidelines
are still pending and are unlikely to address dermatology-specific
aspects, such as image source, lack of standardization, skin tone,
andconsiderationsofbias.10Weproposedermatology-specific con-
siderations forAI algorithms indermatologic practice, clinical trials,
or reviewing dermatology AI development literature.5,9,11-13

Dermatology image-based AI algorithms must consider the
unique featuresofdermatologydata,which currently includea lack
ofstandardizationamongimagingmodalitiesandtheriskofbias from
noisy labels or demographically unrepresentativedata.2,14-16 These
guidelines are intended as requirements for the consideration of
study design and the publication of articles and products that de-

IMPORTANCE The use of artificial intelligence (AI) is accelerating in all aspects of medicine and
has the potential to transform clinical care and dermatology workflows. However, to develop
image-based algorithms for dermatology applications, comprehensive criteria establishing
development and performance evaluation standards are required to ensure product fairness,
reliability, and safety.

OBJECTIVE To consolidate limited existing literature with expert opinion to guide developers
and reviewers of dermatology AI.

EVIDENCE REVIEW In this consensus statement, the 19members of the International Skin
Imaging Collaboration AI working group volunteered to provide a consensus statement.
A systematic PubMed search was performed of English-language articles published between
December 1, 2008, and August 24, 2021, for “artificial intelligence” and “reporting guidelines,”
as well as other pertinent studies identified by the expert panel. Factors that were viewed as
critical to AI development and performance evaluation were included and underwent 2
rounds of electronic discussion to achieve consensus.

FINDINGS A checklist of items was developed that outlines best practices of image-based
AI development and assessment in dermatology.

CONCLUSIONS AND RELEVANCE Clinically effective AI needs to be fair, reliable, and safe;
this checklist of best practices will help both developers and reviewers achieve this goal.

JAMA Dermatol. 2022;158(1):90-96. doi:10.1001/jamadermatol.2021.4915
Published online December 1, 2021.
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commonly used Fitzpatrick scale does not adequately capture hu-
man skin diversity.42 If metadata are unavailable, describe the po-
tential drawbacks of not having this information and the potential
for bias in the data set.2 If reportedmetadata areweighted toward
a certain population, discuss how this may affect generalizability
of the algorithm and the potential for bias.

Additionally, some studiesmay include clinicalmetadata, such
as medical history or history of present illness, in algorithm
development.43 If such clinical metadata are incorporated into
the algorithm, the source of this information and how it was used
in algorithm development should be described.

Define Image Data Sets (Training, Validation, Test)
Used During AI AlgorithmDevelopment (Items 10-12)
Clearly indicate any inclusion or exclusion criteria for images.7 Dis-
cuss any reasoning behind the size of the training, validation, and
test sets and how they were partitioned.7 Indicate information
regarding statistical distributions of metadata or imaging artifacts
described earlier (eg, same clinical site, image capture device,

patient population, presence of artifacts) and whether the inde-
pendent test set comes from similar distributions as the training
and validation data or whether it includes samples drawn from dif-
ferent distributions. As AI algorithms are prone to overfitting, test
sets that include samples drawn from distributions that vary from
training are preferred to measure how well the algorithm general-
izes beyond the training distribution.44 The training, validation,
and test sets must be independent to avoid data leakage. Potential
sources of data leakage between partitions (such as lack of consis-
tent patient labels) and applied mitigation strategies should be
described.7,8

Describe How the Test Data Set Relates to the Proposed Clinical
Setting,With Special Attention to Out-of-Distribution Classes
(Items 13-15)
Authors should consider any differences between the image char-
acteristics used for algorithmdevelopment and those thatmightbe
encountered in the real world. Out-of-distribution (OOD) “classes”
are defined as those class categories or diagnoses thatwere not in-
cluded in algorithm training data. For example, if an algorithm is
trained todifferentiatenevi vsmelanomas, any image showingadi-
agnosis outside of nevi andmelanomas would be OOD. Describe if
images with classes that are OOD were included in the study test
set, and report findings.45 If imageswith OOD classes were not as-
sessed, explain the drawbacks to clinical application (ie, undefined
behaviorwhenpresentedwith classes outside of those studied). In
somecases,OODdatamaybe subtle—for example, beyond classes
not represented in training data, OODmay include unique combi-
nations of other characteristics, such as clinical site, camera used,
lighting, and patient demographics, of which some combinations
may be underrepresented in algorithm training data.42,44 To im-
prove generalizability,multivendor andmultisource images should
be clearly labeled and included in algorithm development and
evaluation.7,15 The distribution of “classes” (eg, diagnoses or other
label) in test data, stratified by patient characteristics such as eth-
nicity, age, and sex, should be clearly described. If there is any class
imbalance (overrepresentation or underrepresentation) across
classes, explainanyproceduresused to rectify class imbalance (such
as oversampling or reweighting).7

Technique
Develop NewAlgorithms Using Standard Labels
of Reference (Items 16-19)
The method used for image labeling should be clearly described
with the reasoningbehind themethodselected. Formalignantneo-
plasms, histopathological diagnosis should be considered the gold
standard in diagnostic tasks.1,37 However, note that even histopa-
thology-based labels can be quite noisy given poor interobserver
agreement for some diagnoses, which adds an additional chal-
lenge toestablishinggold standarddiagnoses (eg,melanoma).46,47

If an alternative method is used for diagnosing malignant neo-
plasms, the potential for biases should be discussed (eg, level of la-
bel noise expected). For cases where histopathology is not avail-
able (eg, benign lesions, inflammatory disorders), there should be
a clear description (eg, monitoring for change, consensus diagno-
sis) and justification of the labeling method. Additional research is
needed to establish gold standards for labeling these classes of im-
ages.For choosing terms fordiagnoses, labels anddiagnosticgroups

Table. Checklist for Evaluation of Image-Based Artificial Intelligence (AI)
AlgorithmReports in Dermatology (CLEARDerm)

Checklist for image-based AI algorithm
development in dermatology

Description is
present/absent

Data

1 Image types

2 Image artifacts (eg, image quality, pen markings,
anatomic site for photography)

3 Technical acquisition details

4 Preprocessing procedures

5 Synthetic images made public if used

6 Public images adequately referenced

7 Patient-level metadata: geographic location of
patients, sex and gender distribution, ethnicity
and/or race, and how it was extracted

8 Skin tone information and procedure by which skin
tone was assessed

9 Potential biases that may arise from use of patient
information and metadata

10 Data set partitions

11 Sample sizes of training, validation, and test sets

12 External test set

13 Multivendor images

14 Class distribution and balance

15 Out-of-distribution images

Technique

16 Labeling method

17 References to common/accepted diagnostic labels

18 Histopathologic review for malignant neoplasms

19 Detailed description of algorithm development

Technical assessment

20 How to publicly evaluate algorithm

21 Performance measures

22 Benchmarking, technical comparison, and novelty

23 Bias assessment

Application

24 Use cases and target conditions (inside distribution)

25 Potential impacts on the health care team and
patients
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commonly used Fitzpatrick scale does not adequately capture hu-
man skin diversity.42 If metadata are unavailable, describe the po-
tential drawbacks of not having this information and the potential
for bias in the data set.2 If reportedmetadata areweighted toward
a certain population, discuss how this may affect generalizability
of the algorithm and the potential for bias.

Additionally, some studiesmay include clinicalmetadata, such
as medical history or history of present illness, in algorithm
development.43 If such clinical metadata are incorporated into
the algorithm, the source of this information and how it was used
in algorithm development should be described.

Define Image Data Sets (Training, Validation, Test)
Used During AI AlgorithmDevelopment (Items 10-12)
Clearly indicate any inclusion or exclusion criteria for images.7 Dis-
cuss any reasoning behind the size of the training, validation, and
test sets and how they were partitioned.7 Indicate information
regarding statistical distributions of metadata or imaging artifacts
described earlier (eg, same clinical site, image capture device,

patient population, presence of artifacts) and whether the inde-
pendent test set comes from similar distributions as the training
and validation data or whether it includes samples drawn from dif-
ferent distributions. As AI algorithms are prone to overfitting, test
sets that include samples drawn from distributions that vary from
training are preferred to measure how well the algorithm general-
izes beyond the training distribution.44 The training, validation,
and test sets must be independent to avoid data leakage. Potential
sources of data leakage between partitions (such as lack of consis-
tent patient labels) and applied mitigation strategies should be
described.7,8

Describe How the Test Data Set Relates to the Proposed Clinical
Setting,With Special Attention to Out-of-Distribution Classes
(Items 13-15)
Authors should consider any differences between the image char-
acteristics used for algorithmdevelopment and those thatmightbe
encountered in the real world. Out-of-distribution (OOD) “classes”
are defined as those class categories or diagnoses thatwere not in-
cluded in algorithm training data. For example, if an algorithm is
trained todifferentiatenevi vsmelanomas, any image showingadi-
agnosis outside of nevi andmelanomas would be OOD. Describe if
images with classes that are OOD were included in the study test
set, and report findings.45 If imageswith OOD classes were not as-
sessed, explain the drawbacks to clinical application (ie, undefined
behaviorwhenpresentedwith classes outside of those studied). In
somecases,OODdatamaybe subtle—for example, beyond classes
not represented in training data, OODmay include unique combi-
nations of other characteristics, such as clinical site, camera used,
lighting, and patient demographics, of which some combinations
may be underrepresented in algorithm training data.42,44 To im-
prove generalizability,multivendor andmultisource images should
be clearly labeled and included in algorithm development and
evaluation.7,15 The distribution of “classes” (eg, diagnoses or other
label) in test data, stratified by patient characteristics such as eth-
nicity, age, and sex, should be clearly described. If there is any class
imbalance (overrepresentation or underrepresentation) across
classes, explainanyproceduresused to rectify class imbalance (such
as oversampling or reweighting).7

Technique
Develop NewAlgorithms Using Standard Labels
of Reference (Items 16-19)
The method used for image labeling should be clearly described
with the reasoningbehind themethodselected. Formalignantneo-
plasms, histopathological diagnosis should be considered the gold
standard in diagnostic tasks.1,37 However, note that even histopa-
thology-based labels can be quite noisy given poor interobserver
agreement for some diagnoses, which adds an additional chal-
lenge toestablishinggold standarddiagnoses (eg,melanoma).46,47

If an alternative method is used for diagnosing malignant neo-
plasms, the potential for biases should be discussed (eg, level of la-
bel noise expected). For cases where histopathology is not avail-
able (eg, benign lesions, inflammatory disorders), there should be
a clear description (eg, monitoring for change, consensus diagno-
sis) and justification of the labeling method. Additional research is
needed to establish gold standards for labeling these classes of im-
ages.For choosing terms fordiagnoses, labels anddiagnosticgroups

Table. Checklist for Evaluation of Image-Based Artificial Intelligence (AI)
AlgorithmReports in Dermatology (CLEARDerm)

Checklist for image-based AI algorithm
development in dermatology

Description is
present/absent

Data

1 Image types

2 Image artifacts (eg, image quality, pen markings,
anatomic site for photography)

3 Technical acquisition details

4 Preprocessing procedures

5 Synthetic images made public if used

6 Public images adequately referenced

7 Patient-level metadata: geographic location of
patients, sex and gender distribution, ethnicity
and/or race, and how it was extracted

8 Skin tone information and procedure by which skin
tone was assessed

9 Potential biases that may arise from use of patient
information and metadata

10 Data set partitions

11 Sample sizes of training, validation, and test sets

12 External test set

13 Multivendor images

14 Class distribution and balance

15 Out-of-distribution images

Technique

16 Labeling method

17 References to common/accepted diagnostic labels

18 Histopathologic review for malignant neoplasms

19 Detailed description of algorithm development

Technical assessment

20 How to publicly evaluate algorithm

21 Performance measures

22 Benchmarking, technical comparison, and novelty

23 Bias assessment

Application

24 Use cases and target conditions (inside distribution)

25 Potential impacts on the health care team and
patients
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Checklist for image-based AI algorithm development in Dermatology 

Data 
1. Describe imaging modalities, confounding artifacts, and pre/post data processing
2. Describe the metadata on images used for AI development. Comment on potential biases
3. Carefully define image datasets (independent training, validation, test) used for AI algorithm development 
4. Clearly describe how the test dataset relates to the proposed clinical setting, with special attention to 
statistical distributions, especially out-of-distribution (OOD) images and data  



Checklist for image-based AI algorithm development in Dermatology 

Technique 5. Develop the AI algorithm using a standard of reference for image labels that is widely accepted in our field 
6. Describe algorithm development
7. The AI algorithm or algorithm output should be publicly evaluable 

Technical 
Assessment 

8. Performance measures should be consistent with proposed clinical translation
9. Benchmarking, technical comparison, and novelty  



Checklist for image-based AI algorithm development in Dermatology 

Application 10. Describe intended use cases and target conditions (inside distribution)
11. Discuss potential impacts on the healthcare team and patients

User
Lay-person self exam
Patient
Nurse
GP
General Dermatol
Expert dermatol

Intended use
Education, diagnostics, monitoring, 
……



Apps + IA







Accuracy of commercially available smartphone applications for the 
detection of melanoma. 
British Journal of Dermatology (2022) 186, pp721–750 
M.D. Sun, J.Kentley, P. Mehta, S.Dusza, A.C. Halpern, V. Rotemberg

15 consecutive histologically proven invasive melanoma cases (pT1a–pT2b) and 15 histologically proven benign 
naevi, all in patients with lighter skin phototypes. Median age was 56 years (range 23–87), and 21 patients (60%) 
were female. Images were cropped to the lesion and are available at the International Skin Imaging Collaboration 
Archive (https://doi.org/10. 34970/401946). Local institutional review board approval was obtained. 
Of 43 apps identified, 25 claimed to identify melanoma and were functional. 

Fifteen of 25 apps returned diagnoses, 12 of 25 risk categories and two of 25 risk scores (Figure 1). Three apps gave 
>1 output type. Mean accuracy was 0,56, 0,60 and 0,64



Apps in Dermatology 
using AI: Position 
statement of the EADV 
Artificial Intelligence 
Task Force

EADV 2023

Risks
Potential risks due to 

inaccuracy, limited reliability, 

especially when analyzing 

suspicious skin lesions for 

features of skin cancer.

Education
Lack of education and proper 

information for users on how to 

correctly select lesions that 

are suspicious of skin cancer.

Regulation
Lack of proper regulation is 

another significant concern 

related to dermatology 

smartphone apps.

Opportunity
Have the potential to become 

reliable screening tools. . 

These apps may provide 

increased access to 

dermatological care.



When the use of AI will become widely 
accepted in pracVce 
• Doctors could potenVally be held 

liable for failing to use available 
so6ware as an aid to diagnosis

• Decisions of liability may become 
complex in situa8ons where the 
clinician and so6ware come to 
contradictory conclusions

AI in medicine: liability and responsibility



Çalışkan SA, Demir K, Karaca O. Artificial intelligence in medical education curriculum: An e-Delphi study for 
competencies. PLoS One. 2022 Jul 21;17(7):e0271872. 

1. Understanding the value, limitaVons and 
use of AI soluVons

2. Knows basic concepts of data science (data 
collecVon, analysis, evaluaVon, safety,…)

3. Chosing the best AI tool in every indicaVon
4. IntegraVon in the workflow of paVents
5. Legal and ethical norms
6. CommunicaVon to paVents 

Expert consensus on the competency items in the Delphi study 







AI in Dermatology



Courtesy of P.Tschanldt



1. Deep phenotyping = clinical, geneVc and deep imaging
2. Augmented intelligence
3. Transparency, educaVon, clinical validaVon, legal aspects

CONCLUSIONS



• Natural language Processing
• Avatars an Deep imaging
• Sensors, biometrics
• ML for complex analytics
• Generative AI
• Robotics for surgery, laser, 
• Drug delivery by nanotech
• AI for monitoring of patients
• AI for support for patients



“….Doctors should spend less time 
collecting information and classifying 

it….

……. and dedicate more time to 
listening, attending and caring for their 

patients”



IA en dermatología: el futuro en 5 años



1. ¿Piensa que la IA puede mejorar su práctica profesional?

a. Sí puede mejorarla
b. No la cambiará de forma significativa
c.  La empeorará
d. No tengo ni idea

IA en dermatología



2. ¿Piensa que la IA cambiará su relación con el paciente?

a. sí puede mejorarla
b. no la cambiará de forma significativa
c. la puede empeorar
d. no tengo ni idea

IA en dermatología



3. ¿Piensa que la IA debe incorporarse en la formación conUnuada 
del dermatólogo?

a. Sí
b. No
c. Sólo para los más jóvenes (a mi ya no me pilla...)
d. La IA me importa un comino

IA en dermatología


